Question : If $\cot A = \frac{15}{8}$, then what will be the value of $\tan 2 A ?$
Option 1: $\frac{200}{161}$
Option 2: $\frac{240}{161}$
Option 3: $\frac{240}{173}$
Option 4: $\frac{220}{171}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{240}{161}$
Solution : $\cot A = \frac{15}{8}$ So, $\tan A = \frac{8}{15}$ Now, $\tan 2A = \frac{2 \ tan A}{1-\tan^2A}$ = $\frac{2 \times \frac{8}{15}}{1-(\frac{8}{15})^2}$ = $\frac{\frac{16}{15}}{\frac{161}{225}}$ = $\frac{16 \times 225}{15 \times 161}$ = $\frac{240}{161}$ Hence, the correct answer is $\frac{240}{161}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Question : If $\sin \theta=\frac{8}{17}$, then find the value of $\tan \theta$.
Question : $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=$___________.
Question : If $\tan\theta +\cot\theta =2$, then the value of $\left (\tan^{n}\theta+\cot^{n}\theta \right)$ is:
Question : If $8 \cot A = 7$, then find $\sin A$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile