Question : If $(a^2 = b + c)$, $(b^2 = a + c)$, $(c^2 = b + a)$. Then, what will be the value of $(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})$?
Option 1: –1
Option 2: 2
Option 3: 1
Option 4: 0
Correct Answer: 1
Solution : Given: $(a^2 = b + c)$, $(b^2 = a + c)$ and $(c^2 = b + a)$ ------------ (1) The given expression is $(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})$ = $(\frac{1×a }{(a+1)×a}+\frac{1× b}{(b+1)×b }+\frac{1×c }{(c+1)×c })$ The first term of the expression is $\frac{1× a}{(a+1)×a } = \frac{a}{a^{2}+a}$ The second term of the expression is $\frac{1× b}{(b+1)× b} = \frac{b}{b^{2}+b}$ The third term of the expression is $\frac{1× c}{(c+1)× c} = \frac{c}{c^{2}+c}$ Substitute the given values from equation (1) in the expression, we get, $\frac{a}{a^{2}+a}+\frac{b}{b^{2}+b}+\frac{c}{c^{2}+c}= \frac{a}{(b+c)+a}+\frac{b}{(a+c)+b}+\frac{c}{(b+a)+c}=\frac{a+b+c}{a+b+c}$ = 1 Hence, the correct answer is 1.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The numerical value of $\frac{(a–b)^{2}}{(b–c)(c–a)}+\frac{(b–c)^{2}}{(c–a)(a–b)}+\frac{(c–a)^{2}}{(a–b)(b–c)}$ is: $(a\neq b\neq c)$
Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Question : If $a+b=2c$, then find $\frac{a}{a–c}+\frac{c}{b–c}$:
Question : If $a, b, c$ are all non-zero and $a+b+c=0$, then find the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{ab}$.
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile