Question : If $\cos ^2 \theta-\sin ^2 \theta=\tan ^2 \phi$, then which of the following is true?
Option 1: $\cos \theta \cos \phi=1$
Option 2: $\cos ^2 \phi-\sin ^2 \phi=\tan ^2 \theta$
Option 3: $\cos ^2 \phi-\sin ^2 \phi=\cot ^2 \theta$
Option 4: $\cos \theta \cos \phi=\sqrt{2}$
Correct Answer: $\cos ^2 \phi-\sin ^2 \phi=\tan ^2 \theta$
Solution : Given, $\cos^2\theta – \sin^2 \theta = \tan^2 \phi$ ⇒ $\frac{\cos^2 \theta – \sin^2\theta}{1} = \frac{\sin^2\phi}{\cos^2 \phi}$ ⇒ $\frac{\cos^2 \theta – \sin^2 \theta}{\cos^2\theta + \sin^2 \theta} = \frac{\sin^2\phi}{\cos^2 \phi}$ By Componendo and Dividendo, ⇒ $\frac{\cos^2 \theta}{–\sin^2 \theta} = \frac{\sin^2 \phi + \cos^2 \phi}{\sin^2 \phi - \cos^2 \phi}$ ⇒ $\frac{–\sin^2\theta}{\cos^2 \theta} = \frac{\sin^2 \phi – \cos^2 \phi}{\sin^2 \phi+ \cos^2 \phi}$ ⇒ $\frac{–\sin^2\theta}{\cos^2 \theta}= \frac{\sin^2\phi – \cos^2 \phi}{1}$ [As $\sin^2\phi + \cos^2\phi=1$] ⇒ $\tan^2 \theta = \cos^2\phi-\sin^2\phi $ Hence, the correct answer is $\tan^2 \theta = \cos^2 \phi-\sin^2 \phi$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$, then $(\cos \theta+\sin \theta)$ is:
Question : If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$, then find $\frac{\sin \theta-\cos \theta}{\sin \theta}$:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : Simplify $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$.
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile