Question : If $a:b=5:7$, then $\left(6a^2-2b^2\right):\left(b^2-a^2\right)$ will be:
Option 1: 12 : 5
Option 2: 21 : 5
Option 3: 13 : 6
Option 4: 17 : 8
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 13 : 6
Solution : $a: b=5: 7$ Assume $a$ as 5 and $b$ as 7. $(6a^2-2b^2):(b^2-a^2)$ $= (6×5^2-2×7^2):(7^2-5^2)$ $= (6×25-2×49):(49-25)$ $= (150-98):(49-25)$ $= 52:24$ $= 13:6$ Hence, the correct answer is 13 : 6.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left (a+b \right):\left (b+c \right):\left (c+a \right)= 6:7:8$ and $\left (a+b+c \right) = 14,$ then value of $c$ is:
Question : Solve: $\left(1+\frac{5}{6}+\frac{7}{8}+\frac{11}{12}\right) \div\left(\frac{3}{4}-\frac{5}{8}\right)$
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If A : B = 2 : 3, B : C = 6 : 7, C : D = 14 : 3, then find A : B : C : D.
Question : If $\left(z+\frac{1}{z}\right)=4$, then what will be the value of $\frac{1}{2}\left(z^2+\frac{1}{z^2}\right)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile