4 Views

Question : If two medians BE and CF of a triangle ABC, intersect each other at G and if BG = CG, $\angle$BGC = $120^{\circ}$, BC = 10 cm, then the area of the triangle ABC is:

Option 1: $50\sqrt{3}$ $cm^2$

Option 2: $60$ $cm^2$

Option 3: $25$ $cm^2$

Option 4: $25\sqrt{3}$ $cm^2$


Team Careers360 19th Jan, 2024
Answer (1)
Team Careers360 23rd Jan, 2024

Correct Answer: $25\sqrt{3}$ $cm^2$


Solution :

In $\triangle$ BGC,
BG = CG, $\angle$BGC = $120^{\circ}$, BC = 10 cm
$\triangle$ BGC is an isosceles triangle.
⇒ $\angle$GBC = $\angle$GCB
Sum of angles of a triangle = $180^{\circ}$
$\angle$GBC + $\angle$GCB + $\angle$BGC = $180^{\circ}$
$2\angle$GBC = $180^{\circ}-120^{\circ}$ = $60^{\circ}$
$\angle$GBC = $\frac{60^{\circ}}{2}$ = $30^{\circ}$
GD $\perp$ BC
$\angle$BGD = $\angle$CGD = $60^{\circ}$
$\cos 30^{\circ} = \frac{BD}{BG}$
⇒ BG = $5 × \frac{2}{\sqrt3}$ = $\frac{10}{\sqrt3}$
⇒ GD = BG × $\sin 30^{\circ}$ = $\frac{10}{\sqrt3}$ × $\frac{1}{2}$ = $\frac{5}{\sqrt3}$
Since G is the centroid of $\triangle$ABC,
AG : GD = 2 :1
AD : GD = 3 : 1
AD = 3 ×$\frac{5}{\sqrt3}$ = $\frac{15}{\sqrt3}$
Since AD is the altitude of $\triangle$ABC,
Area of $\triangle$ABC = $\frac{1}{2} × BC × AD = \frac{1}{2}×10×\frac{15}{\sqrt3} = \frac{75}{\sqrt3} = 25\sqrt3 \;cm^2$
Hence, the correct answer is $25\sqrt3$ $cm^2$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books