Question : If $ \frac{(5x\:-\:y)}{(5x\:+\:y)}=\frac{3}{7},$ what is the value of $\frac{(4x^{2}\:+\:y^{2}\:–\:4xy)}{(9x^{2}\:+\:16y^{2}\:+\:24xy)}$?
Option 1: $0$
Option 2: $\frac{3}{7}$
Option 3: $\frac{18}{49}$
Option 4: $\frac{1}{6}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $\frac{(5x\:-\:y)}{(5x\:+\:y)}=\frac{3}{7}$ $⇒35x-7y=15x+3y$ $⇒20x-10y=0$ $⇒2x-y=0$---------------(i) $\frac{(4x^{2}\:+\:y^{2}\:-\:4xy)}{(9x^{2}\:+\:16y^{2}\:+\:24xy)}$ = $\frac{(2x\:-\:y)^{2}}{(9x^{2}\:+\:16y^{2}\:+\:24xy)}$ Since from equation (i), we know $2x-y=0$, substituting the value in the above equation, we get, $=\frac{0}{(9x^{2}\:+\:16y^{2}\:+\:24xy)}=$ 0 Hence, the correct answer is $0$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{3–5x}{2x}+\frac{3–5y}{2y}+\frac{3–5z}{2z}=0$, the value of $\frac{2}{x}+\frac{2}{y}+\frac{2}{z}$ is:
Question : If $\left (4x+\frac{1}{x} \right)=5,x\neq 0,$ then the value of $\frac{5x}{4x^{2}+10x+1}$ is:
Question : If $\frac{1}{6}$ of $x$ – $\frac{7}{2}$ of $\frac{3}{7}$ equals to $(-\frac{7}{4})$, then the value of $x$ is:
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Question : The graphs of the equations $4 x+\frac{1}{3} y=\frac{8}{3}$ and $\frac{1}{2} x+\frac{3}{4} y+\frac{5}{2}=0$ intersect at a point P. The point P also lies on the graph of the equation:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile