Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Option 1: $3\sqrt{5}$
Option 2: $3\sqrt{5}-7$
Option 3: $3\sqrt{5}+7$
Option 4: $8$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3\sqrt{5}-7$
Solution : Given: $x+[\frac{1}{(x+7)}]=0$ Adding both sides 7, we get, ⇒ $x+7+[\frac{1}{(x+7)}]=7$ Squaring both sides, we get, ⇒ $(x+7)^{2}+(\frac{1}{x+7})^{2}+2=49$ ⇒ $(x+7)^{2}+(\frac{1}{x+7})^{2}=47$ Subtracting 2 from both sides, $(x+7)^{2}+(\frac{1}{x+7})^{2}–2=47-2$ ⇒ $[(x+7)-(\frac{1}{x+7})]^{2}=45$ ⇒ $[(x+7)-(\frac{1}{x+7})]=\sqrt{45}$ ⇒ $[(x-\frac{1}{x+7})]=\sqrt{45}-7=\sqrt{9 \times5}-7=3\sqrt{5}–7$ Hence, the correct answer is $3\sqrt{5}-7$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $\left(x+\frac{1}{x}\right)=5$, and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)?$
Question : If $2x+\frac{1}{2x}=2,$ what is the value of $\sqrt{2\left (\frac{1}{x}\right)^{4}+\left (\frac{1}{x}\right)^{5}}\; ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile