Question : If $x+\frac{1}{x}=17,$ what is the value of $\frac{x^{4}+\frac{1}{x^{2}}}{x^{2}-3x+1}\; ?$
Option 1: $\frac{2431}{7}$
Option 2: $\frac{3375}{7}$
Option 3: $\frac{3375}{14}$
Option 4: $\frac{3985}{9}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2431}{7}$
Solution : Given: $x+\frac{1}{x}=17$ $⇒x^{2}+1=17x$ $⇒x^{2}-3x+1=14x$ Also, $x^{3}+\frac{1}{x^{3}}=(x+\frac{1}{x})^{3}-3(x)(\frac{1}{x})(x+\frac{1}{x})$ $⇒x^{3}+\frac{1}{x^{3}}=17^{3}-3(1)(17)=4862$ Now, $ \frac{x^{4}+\frac{1}{x^{2}}}{x^{2}-3x+1}$ = $\frac{x^{4}+\frac{1}{x^{2}}}{14x}$ = $\frac{x^{3}+\frac{1}{x^{3}}}{14}$ = $\frac{4862}{14}$ = $\frac{2431}{7}$ Hence, the correct answer is $\frac{2431}{7}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac {x^2+3x+1}{x^2–3x+1}=\frac{1}{2 }$, then the value of $(x+\frac{1}{x})$ is:
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : When $2x+\frac{2}{x}=3$, then the value of ($x^3+\frac{1}{x^3}+2)$ is:
Question : Simplify the following expression. $\frac{x^2-2 x-63}{x^2+14 x+49}$
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile