Question : If $\operatorname{cosec} \theta+ \cot \theta=\frac{3}{2}$, what is the value of $\operatorname{cosec} \theta$?
Option 1: $\frac{13}{12}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{11}{12}$
Option 4: $\frac{9}{13}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{13}{12}$
Solution : Given: $\operatorname{cosec}\ \theta+\cot \theta=\frac{3}{2}$ -----------------(1) Since we know that $(\operatorname{cosec} \ \theta+\cot \theta)(\operatorname{cosec}\ \theta-\cot \theta)=1$ Substitute the given value in the above identity and we get, $⇒\frac{3}{2}×(\operatorname{cosec} \ \theta-\cot \theta)=1$ $⇒\operatorname{cosec} \ \theta-\cot \theta=\frac{2}{3}$-------------------------(2) Adding equation (1) and equation (2), we get, $\operatorname{cosec}\ \theta+\cot \theta+\operatorname{cosec}\ \theta-\cot \theta=\frac{9+4}{6}$ $⇒2\operatorname{cosec}\ \theta=\frac{13}{6}$ $⇒\operatorname{cosec}\ \theta=\frac{13}{12}$ Hence, the correct answer is $\frac{13}{12}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\operatorname{cosec} \theta+\cot \theta=p$, then the value of $\frac{p^2-1}{p^2+1}$ is:
Question : If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}, \theta$ lies in first quadrant, then the value of $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$ is:
Question : If $\operatorname{cosec} \theta+\cot \theta=2$, then what is the value of $\operatorname{cosec} \theta$?
Question : The value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is:
Question : If $\operatorname{cosec} \theta + \operatorname{cot} \theta = m$, find the value of$\frac{m^2 – 1}{m^2 + 1}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile