Question : If $\frac{1}{N}=\frac{(\sqrt6+\sqrt5)}{(\sqrt6-\sqrt5)}$, what is the value of $N$?
Option 1: $6-\sqrt{30}$
Option 2: $6+\sqrt{30}$
Option 3: $11-2\sqrt{30}$
Option 4: $11+2\sqrt{5}$
Correct Answer: $11-2\sqrt{30}$
Solution : Given: $\frac{1}{N}=\frac{(\sqrt6+\sqrt5)}{(\sqrt6-\sqrt5)}$ ⇒ $N=\frac{(\sqrt6-\sqrt5)}{(\sqrt6+\sqrt5)}$ Multiplying numerator and denominator by $(\sqrt6-\sqrt5)$, $N=\frac{(\sqrt6-\sqrt5)\times (\sqrt6-\sqrt5)}{(\sqrt6+\sqrt5)\times (\sqrt6-\sqrt5)}$ Using identities: $(a^2-b^2)=(a-b)(a+b)$ and $(a-b)^2=a^2+b^2-2ab$, $N=\frac{(6+5-2\times \sqrt6\times \sqrt5)}{(6-5)}$ ⇒ $N=11-2\sqrt{30}$ Hence, the correct answer is $11-2\sqrt{30}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $N= \frac{(\sqrt6-\sqrt5)}{(\sqrt6+\sqrt5)}$, then what is the value of $(N+\frac{1}{N})$?
Question : If $\cos A=\frac{1}{11}$, then find the value of cot A.
Question : If $\sqrt5=2.236$, then what is the value of $\frac{\sqrt5}{2}+\frac{5}{3\sqrt5}-\sqrt{45}$?
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile