Question : If $\tan^4\theta + \tan^2\theta=1$, what is the value of $11(\cos^4\theta+\cos^2\theta)$?
Option 1: – 11
Option 2: 8
Option 3: 0
Option 4: 11
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 11
Solution : Given: $\tan^4\theta + \tan^2\theta=1$ ⇒ $\tan^2\theta(\tan^2\theta+1)=1 [\because \sec^2\theta-\tan^2\theta=1]$ ⇒ $\tan^2\theta \sec^2\theta=1$ $\therefore \tan^2\theta=\cos^2\theta$ $11(\cos^4\theta+\cos^2\theta)$ = $11[(\cos^2\theta)^2+\cos^2\theta]$ = $11(\tan^4\theta + \tan^2\theta)$ = $11×1$ = $11$ Hence, the correct answer is 11.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $\tan \theta=\frac{4}{3}$, then the value of $\frac{3\sin \theta+ 2\cos \theta}{3\sin \theta – 2 \cos \theta}$ is:
Question : If $\sin\theta+\sin^{2}\theta=1$, then the value of $\cos^{12}\theta+3\cos^{10}\theta+3\cos^{8}\theta+\cos^{6}\theta-1$ is:
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $\sin \theta=\frac{1}{2}$, then the value of $\left(3 \cos \theta-4 \cos ^3 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile