Question : If $x^2-\frac{1}{x^2}=4 \sqrt{2}$, what is the value of $x^4-\frac{1}{x^4}?$
Option 1: $16 \sqrt{2}$
Option 2: $8\sqrt{2}$
Option 3: $24 \sqrt{2}$
Option 4: $32 \sqrt{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $24 \sqrt{2}$
Solution : $x^2-\frac{1}{x^2}=4 \sqrt{2}$ Squaring both sides, we get $x^4+\frac{1}{x^4}-2=32$ ⇒ $x^4+\frac{1}{x^4}=34$ Adding 2 on both sides, we get $x^4+\frac{1}{x^4}+2=36$ ⇒ ($x^2+\frac{1}{x^2})^2 =6^2$ ⇒ $x^2+\frac{1}{x^2}=6$ Now, $x^4-\frac{1}{x^4} = (x^2-\frac{1}{x^2} )(x^2+\frac{1}{x^2})$ $= 4 \sqrt{2}\times 6 =24\sqrt{2}$ Hence, the correct answer is $24\sqrt{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+\frac{16}{x}=8$, then the value of $x^2+\frac{32}{x^2}$ is:
Question : If $\left(x^2+\frac{1}{x^2}\right)=6$ and $0<x<1$, what is the value of $x^4-\frac{1}{x^4}$?
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Question : If $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$, what is the value of $x$?
Question : If $\left(x+\frac{1}{x}\right)=\sqrt{6}$ and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile