Question : If $3A=5B$, what is the value of $\frac{A+B}{B}$?
Option 1: $\frac{8}{3}$
Option 2: $\frac{8}{5}$
Option 3: $\frac{5}{8}$
Option 4: $\frac{5}{3}$
Correct Answer: $\frac{8}{3}$
Solution : Given: $3A=5B$ ⇒ $\frac{A}{B}=\frac{5}{3}$ Let, $A=5k, B=3k$ So, $\frac{A+B}{B}=\frac{5k+3k}{3k}=\frac{8}{3}$ Hence, the correct answer is $\frac{8}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : If $2A=3B$, then what is the value of $\frac{A+B}{A}$?
Question : The value of 5 ÷ [5 + 8 – {4 + (4 of 2 ÷ 4) – (2 ÷ 4 of 2)}] is:
Question : The value of $\frac{5-2 \div 4 \times[5-(3-4)]+5 \times 4 \div 2 \text { of } 4}{4+4 \div 8 \text { of } 2 \times(8-5) \times 2 \div 3-8 \div 2 \text { of } 8}$ is:
Question : If $\sin A=\frac{1}{2}$, then the value of $(\tan A+\cos A)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile