Question : If $\theta=135^{\circ} ; y=15^{\circ}$, what is the value of $2\cos(\theta)\sin(y)$?
Option 1: $\frac{\sqrt{3}-1}{2}$
Option 2: $\frac{1-\sqrt{3}}{2}$
Option 3: $2-\sqrt{3}$
Option 4: $\sqrt{3}-2$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1-\sqrt{3}}{2}$
Solution : $\theta=135^{\circ}$ $y=15^{\circ}$ $2 \cos (\theta) \sin (y)$ = $2 \cos (135^{\circ}) \sin (15^{\circ})$ = $2 \cos (180^{\circ}-45^{\circ}) \sin (45^{\circ}-30^{\circ})$ = $2$ × $[-\cos45^{\circ}]$ × $[ \sin (45^{\circ})\cos(30^{\circ})-\cos (45^{\circ})\sin(30^{\circ})]$ = $2$ × $[ -\frac{1}{\sqrt2}]$ × $[ \frac{1}{\sqrt2}×\frac{\sqrt3}{2}-\frac{1}{\sqrt2}×\frac{1}{2}]$ = $2$ × $[-\frac{1}{\sqrt2}]$ × $[\frac{\sqrt3-1}{2\sqrt2}]$ = $\frac{1-\sqrt3}{2}$ Hence, the correct answer is $\frac{1-\sqrt3}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : If $\sin(\theta+30^{\circ})=\frac{3}{\sqrt{12}}$, then the value of $\cos^{2}\theta$ is:
Question : If $7\sin^{2}\theta+3\cos^{2}\theta=4$, and $0^{\circ}< \theta< 90^{\circ}$, then the value of $\tan\theta$ is:
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile