Question : If $abc = 5$, what is the value of $(\frac{1}{1+a+b^{-1}}+\frac{1}{1+b+5 c^{-1}}+\frac{1}{1+\frac{c}{5}+a^{-1}})$?
Option 1: $5$
Option 2: $1$
Option 3: $\frac{1}{5}$
Option 4: $(a+b+c)$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : $abc = 5$ ⇒ $b = \frac{5}{ac}$ ⇒ $b^{-1} = \frac{ac}{5}$ ⇒ $\frac{c}{5} = \frac{1}{ab}$ Now, $(\frac{1}{1+a+b^{-1}}+\frac{1}{1+b+5 c^{-1}}+\frac{1}{1+\frac{c}{5}+a^{-1}})$ = $(\frac{1}{1+a+\frac{ac}{5}}+\frac{1}{1+ \frac{5}{ac}+5 c^{-1}}+\frac{1}{1+ \frac{1}{ab}+a^{-1}})$ = $(\frac{5}{5+5a+ac} +\frac{ac}{5+ 5a +ac}+\frac{5a}{5+5a+ac})$ = $\frac{5+5a+ac}{5+5a+ac}$ = $1$ Hence, the correct answer is $1$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : What is the value of $\left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)$, if $\frac{2a - 5}{a} - \frac{4b - 5}{b} + \frac{6c + 5}{c} = 0$?
Question : If $a+b+c=15$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{71}{abc}$, then the value of $a^{3}+b^{3}+c^{3}-3abc$ is:
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Question : If $\frac{(a+b)}{c}=\frac{6}{5}$ and $\frac{(b+c)}{a}=\frac{9}{2}$, then what is the value of $\frac{(a+c)}{b}\; ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile