Question : If $\tan A-\tan B-\tan C=\tan A \tan B \tan C$, what is the value of A in terms of B and C?
Option 1: $A = B + C$
Option 2: $A = 2 B - 2C$
Option 3: $A = B - C$
Option 4: $A=\frac{B-C}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
Correct Answer: $A = B + C$
Solution :
Given, $\tan A-\tan B-\tan C=\tan A \tan B \tan C$
⇒ $\tan A - \tan A \tan B \tan C = \tan B + \tan C$
⇒ $\tan A(1-\tan B \tan C)= \tan B + \tan C$
⇒ $\tan A = \frac{\tan B + \tan C}{1-\tan B \tan C}$
⇒ $\tan A = \tan(B+C)$
$\therefore A = B + C$
Hence, the correct answer is $A = B + C$.
Related Questions
Know More about
Staff Selection Commission Combined Grad ...
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Get Updates BrochureYour Staff Selection Commission Combined Graduate Level Exam brochure has been successfully mailed to your registered email id “”.