Question : If $\frac{A}{3}=\frac{B}{2}=\frac{C}{5}$, what is the value of ratio $(C+A)^{2}:(A+B)^{2}:(B+C)^{2}$?
Option 1: $9:4:25$
Option 2: $25:4:9$
Option 3: $64:25:49$
Option 4: $49:25:64$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $64:25:49$
Solution : Given: $\frac{A}{3}=\frac{B}{2}=\frac{C}{5}$ Let $\frac{A}{3}=\frac{B}{2}=\frac{C}{5}=k$ $⇒A=3k,B=2k,C=5k$ Putting these values, we get, $(C+A)^{2}:(A+B)^{2}:(B+C)^{2}$ $=(5k+3k)^{2}:(3k+2k)^{2}:(2k+5k)^{2}$ $=64k^{2}:25k^{2}:49k^{2}$ $=64:25:49$ Hence, the correct answer is $64:25:49$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $\frac{(a+b)}{c}=\frac{6}{5}$ and $\frac{(b+c)}{a}=\frac{9}{2}$, then what is the value of $\frac{(a+c)}{b}\; ?$
Question : If $abc = 5$, what is the value of $(\frac{1}{1+a+b^{-1}}+\frac{1}{1+b+5 c^{-1}}+\frac{1}{1+\frac{c}{5}+a^{-1}})$?
Question : If $3\sqrt{\frac{1-a}{a}}+9=19-3\sqrt{\frac{a}{1-a}};$ then, what is the value of $a?$
Question : If $a^2+b^2+c^2=16$, $x^2+y^2+z^2=25$ and $ax+by+cz=20$, then the value of $\frac{a+b+c}{x+y+z}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile