Question : If $\sin \left(5 x-25^{\circ}\right)=\cos \left(5 y+25^{\circ}\right)$, where $5 x-25^{\circ}$ and $5 y+25^{\circ}$ are acute angles, then the value of $(x+y)$ is:
Option 1: 50°
Option 2: 40°
Option 3: 18°
Option 4: 16°
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 18°
Solution : Given: $\sin (5 x-25°)=\cos (5 y+25°)$ ⇒ $\sin (5 x-25°)=\sin (90°-5 y-25°)$ ⇒ $5x-25° = 90°-5y-25°$ ⇒ $5x+5y = 90°$ ⇒ $x+y = \frac{90}{5}$ $\therefore x+y= 18°$ Hence, the correct answer is 18°.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\cos x=\sin y$ and $\cot(x–40°)=\tan(50°–y)$, then the values of $x$ and $y$ are:
Question : If $\cos\left(40^\circ+x\right)=\sin 30^\circ$, then the value of $x$ is:
Question : If $\sin Y=x$, then what will be the value of $\cos 2Y\left(\right.$ where $\left.0 \leq Y \leq 90^{\circ}\right)$?
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile