Question : If $\tan (\alpha+\beta)=\sqrt{3}, \tan (\alpha-\beta)=1$ where $(\alpha+\beta)$ and $(\alpha-\beta)$ are acute angles, then what is $\tan$ $(6 \alpha) ?$
Option 1: $-1$
Option 2: $0$
Option 3: $1$
Option 4: $\sqrt{2}-1$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $-1$
Solution : Given: $\tan (\alpha+\beta)=\sqrt{3}=\tan 60^{\circ}$ $\tan (\alpha-\beta)=1=\tan 45^{\circ}$ ⇒ $\alpha+\beta=60^{\circ}$ and $\alpha-\beta=45^{\circ}$ ⇒ $2\alpha=105^{\circ}$ ⇒ $\alpha=\frac{105}{2}^{\circ}$ ⇒ $6\alpha=6×\frac{105}{2}^{\circ}=315^{\circ}$ Now, $\tan 6\alpha$ = $\tan 315^{\circ}$ = $\tan (360^{\circ}-45^{\circ})$ = $-\tan45^{\circ}$ = $-1$ Hence, the correct answer is $-1$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\alpha +\beta =90^\circ$ and $\alpha :\beta =2:1,$ then the ratio of $\cos \alpha$ to $\cos \beta$ is:
Question : Using $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$, find the value of
Question : If $\tan(\alpha -\beta)=1,\sec(\alpha +\beta)=\frac{2}{\sqrt{3}}$ and $\alpha ,\beta$ are positive, then the smallest value of $\alpha$ is:
Question : If $\alpha$ and $\beta$ are the roots of equation $x^{2}-2x+4=0$, then what is the equation whose roots are $\frac{\alpha ^{3}}{\beta ^{2}}$ and $\frac{\beta ^{3}}{\alpha ^{2}}?$
Question : If $\tan \alpha = 6$, then $\sec \alpha$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile