Question : If $\sec\theta-\cos\theta=\frac{3}{2}$, where $\theta$ is a positive acute angle, then the value of $\sec\theta$ is:
Option 1: $-\frac{1}{2}$
Option 2: $1$
Option 3: $2$
Option 4: $0$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2$
Solution : Given: $\sec\theta-\cos\theta$ = $\frac{3}{2}$ ⇒ $\frac{1}{\cos\theta}-\cos\theta=\frac{3}{2}$ Let $\cos\theta=x$ ⇒ $\frac{1}{x}-x=\frac{3}{2}$ ⇒ $2(1-x^2) = 3x$ ⇒ $2-2x^2 = 3x$ ⇒ $2x^2+3x - 2=0$ ⇒ $2x^2+4x-x-2 = 0$ ⇒ $2x(x+2)-1(x+2) = 0$ ⇒ $(x+2)(2x-1) = 0$ ⇒ $x = -2, \frac{1}{2}$ Neglecting the negative value, we get, $\cos\theta = \frac{1}{2}$ So, $\sec\theta = 2$ Hence, the correct answer is $2$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\sec \theta-2 \cos \theta=\frac{7}{2}$, where $\theta$ is a positive acute angle, then the value of $\sec \theta$ is:
Question : If $\theta$ is a positive acute angle and $\tan2\theta \tan3\theta=1$, then the value of $2(\cos^2\frac{5\theta}{2}-1)$ is:
Question : $\theta$ is a positive acute angle and $\sin\theta-\cos\theta=0$, then the value of $\sec\theta+\operatorname{cosec}\theta$ is:
Question : If $\theta$ is a positive acute angle and $3(\sec^{2}\theta+\tan^{2}\theta)=5$, then the value of $\cos2\theta$ is:
Question : If $\theta$ is a positive acute angle and $4\sin^{2}\theta =3$, then the value of $\left (\tan\theta-\cot\frac{\theta}{2}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile