Question : If $\cos^2 \theta=\frac{3}{4}$, where $\theta$ is an acute angle, then the value of $\sin \left(\theta+30^{\circ}\right)$ is:
Option 1: $1$
Option 2: $\frac{1}{\sqrt{2}}$
Option 3: $\frac{1}{2}$
Option 4: $\frac{\sqrt{3}}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{3}}{2}$
Solution : Given: $\cos^2 \theta=\frac{3}{4}$ ⇒ $\cos \theta=\pm\frac{\sqrt3}{2}$ $\theta$ is an acute angle i.e. it will be less than 90°. $\therefore \cos \theta=-\frac{\sqrt3}{2}$ will be rejected. ⇒ $\cos \theta=\frac{\sqrt3}{2}$ ⇒ $\theta = 30°$ Now we have to find $\sin \left(\theta+30^{\circ}\right)$ $ = \sin(30° + 30°) = \sin 60° = \frac{\sqrt{3}}{2}$ Hence, the correct answer is $\frac{\sqrt{3}}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\cos \left(30^{\circ}+\theta\right)-\sin \left(60^{\circ}-\theta\right)=$ _____________.
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : If $\cos \left(2 \theta+54^{\circ}\right)=\sin \theta, 0^{\circ}<\left(2 \theta+54^{\circ}\right)<90^{\circ}$, then what is the value of $\frac{1}{\tan 5 \theta+\operatorname{cosec} \frac{5 \theta}{2}}$?
Question : If $\theta$ is positive acute angle and $7\cos^{2}\theta+3\sin^{2}\theta =4$, then the value of $\theta$ is:
Question : If $\sin(\theta+30^{\circ})=\frac{3}{\sqrt{12}}$, then the value of $\cos^{2}\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile