Question : If $\tan 2 \theta=\cot \left(\theta-36^{\circ}\right)$, where $2 \theta$ is an acute angle, then the value of $\theta$ is:
Option 1: 18°
Option 2: 36°
Option 3: 30°
Option 4: 42°
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 42°
Solution : Given, $\tan 2 \theta=\cot \left(\theta-36^{\circ}\right)$ ⇒ $\tan 2 \theta=\tan \left(90^{\circ}-\theta+36^{\circ}\right)$ ⇒ $2\theta=126^{\circ}-\theta$ ⇒ $3\theta=126^{\circ}$ $\therefore \theta=42^{\circ}$ Hence, the correct answer is 42°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:
Question : If $\cot 2 {A}=\tan \left({A}-48^{\circ}\right)$, then what is the value of $A$?
Question : If $\tan \theta-\cot \theta=4$, then find the value of $\tan ^2 \theta+\cot ^2 \theta$.
Question : If $\tan(5\theta-10^\circ)=\cot(5\varphi+20^\circ)$, then the value of $(\theta+\varphi)$ is:
Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile