Question : If $\cot B=\frac{15}{8}$, where $B$ is an acute angle, what is the value of $\sec B+\tan B$?
Option 1: $\frac{4}{5}$
Option 2: $\frac{5}{3}$
Option 3: $\frac{5}{4}$
Option 4: $\frac{3}{5}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{5}{3}$
Solution : Given: $\cot B=\frac{15}{8}$ We know that $\cot B=\frac{\text{base (b)}}{\text{perpendicular (p)}}=\frac{15}{8}$ So, $h^2 = \sqrt{b^2+p^2}$ where $h$ is hypotenuse. ⇒ $h^2 = \sqrt{15^2+8^2}$ ⇒ $h^2 = \sqrt{225+64}$ ⇒ $h^2 = \sqrt{289}$ ⇒ $h = 17$ Thus, $\sec B+\tan B$ $= \frac{\text{h}}{\text{b}}+\frac{\text{p}}{\text{b}}$ Putting the values of $p, b$, and $h$, we get $= \frac{17}{15}+\frac{8}{15}$ $= \frac{25}{15}$ $= \frac{5}{3}$ Hence, the correct answer is $\frac{5}{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $A$ is an acute angle and $8\sec A=17$, find the value of $\tan A$.
Question : If 3 cot A = 4 and A is an acute angle, then find the value of sec A.
Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:
Question : If $\sin A=\frac{2}{5}$, where $A$ is an acute angle, what is the value of $\frac{5 \sin A+2 \operatorname{cosec} A}{\sqrt{21} \sec A}$?
Question : If $\sec \beta+\tan \beta=2$, then what is the value of $\cot \beta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile