Question : If $a+b :\sqrt{ab} = 4:1 $ where $ a > b > 0$, then $ a:b$ is:
Option 1: $\left (2+\sqrt{3} \right):\left (2-\sqrt{3} \right)$
Option 2: $\left (2-\sqrt{3} \right):\left (2+\sqrt{3} \right)$
Option 3: $\left (3+\sqrt{2} \right):\left (3-\sqrt{2} \right)$
Option 4: $\left (3-\sqrt{2} \right):\left (3+\sqrt{2} \right)$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\left (2+\sqrt{3} \right):\left (2-\sqrt{3} \right)$
Solution : Given: $\frac{\left (a+b \right)}{\sqrt{ab}}=\frac{4}{1}$ ⇒ $\frac{a+b}{2\sqrt{ab}}=\frac{2}{1}$ Applying componendo and dividendo, we get, ⇒ $\frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}}=\frac{2+1}{2-1}$ ⇒ $\frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2}=\frac{3}{1}$ ⇒ $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{3}}{1}$ Again applying componendo and dividendo we get, ⇒ $\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$ ⇒ $\frac{a}{b}=\left ( \frac{\sqrt{3}+1}{\sqrt{3}-1} \right )^2$ ⇒ $\frac{a}{b}=\frac{3+1+2\sqrt{3}}{3+1-2\sqrt{3}}$ ⇒ $\frac{a}{b}=\frac{4+2\sqrt{3}}{4-2\sqrt{3}}$ $\therefore \frac{a}{b}=\frac{2+\sqrt{3}}{2-\sqrt{3}}$ Hence, the correct answer is $({2+\sqrt{3}}):({2-\sqrt{3}})$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Question : If $\sqrt[3]{a}+\sqrt[3]{b}=\sqrt[3]{c}$, then the simplest value of $\left (a+b+c \right )^{3}+27abc$ is:
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Question : If $\left(y^2+\frac{1}{y^2}\right)=74$ and $y>1$, then find the value of $\left(y-\frac{1}{y}\right)$.
Question : If $\alpha +\beta =90^{0}$, then value of $\left (1-\sin^{2}\alpha \right)\left (1-\cos^{2}\alpha \right)\times \left (1+\cot^{2}\beta \right)\left (1+\tan^{2}\beta \right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile