Question : If $\sin\left ( 2a+45^{\circ} \right )=\cos\left ( 30^{\circ}-a \right )$ where $0^{\circ}< a< 90^{\circ}$, then the value of a is:
Option 1: $0^{\circ}$
Option 2: $15^{\circ}$
Option 3: $45^{\circ}$
Option 4: $60^{\circ}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $15^{\circ}$
Solution : $\sin\left ( 2a+45^{\circ} \right )=\cos\left ( 30^{\circ}-a \right )$ ⇒ $\sin\left ( 2a+45^{\circ} \right )=\sin\left ( 90^{\circ}–(30^{\circ}-a \right ))$ ⇒ $2a+45^{\circ} = 90^{\circ}–(30^{\circ}–a)$ ⇒ $2a+45^{\circ} = 90^{\circ}–30^{\circ}+a$ ⇒ $a = 60^{\circ}–45^{\circ}$ ⇒ $a = 15^{\circ}$ Hence, the correct answer is $15^{\circ}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Question : The value of $\left(\sin 30^{\circ} \cos 60^{\circ}-\cos 30^{\circ} \sin 60^{\circ}\right)$ is equal to:
Question : The value of $\theta$ $ \left ( 0\leq \theta \leq 90^{\circ} \right )$ satisfying $2\sin^{2}\theta = 3\cos \theta$ is:
Question : Evaluate the following: $\cos \left(36^{\circ}+A\right) \cdot \cos \left(36^{\circ}-A\right)+\cos \left(54^{\circ}+A\right) \cdot \cos \left(54^{\circ}-A\right)$
Question : If $0\leq\theta\leq 90^{\circ}$ and $4\cos^{2}\theta-4\sqrt{3}\cos\theta+3=0$, then the value of $\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile