Question :
If $\tan2\theta\tan3\theta=1$ where $0°<\theta<90°$, then the value of $\theta$ is:
Option 1: $22\frac{1}{2}°$
Option 2: $18°$
Option 3: $24°$
Option 4: $30°$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $18°$
Solution : Given: $\tan2\theta\tan3\theta=1$ ⇒ $\tan3\theta=\frac{1}{\tan2\theta}$ ⇒ $\tan3\theta=\cot2\theta$ ⇒ $\tan3\theta=\tan(90°–2\theta)$ ⇒ $3\theta=(90°-2\theta)$ ⇒ $5\theta=90°$ $\therefore\theta=18°$ Hence, the correct answer is $18°$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $(r\cos \theta -\sqrt{3})^{2}+(r\sin \theta -1)^{2}=0$, then the value of $\frac{r\tan \theta +\sec \theta}{r\sec \theta +\tan\theta}$ is equal to:
Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : If $4\sin^{2}\theta-1=0$ and angle $\theta$ is less then $90^{\circ}$, the value of $\cos^{2}\theta+\tan^{2}\theta$ is: (Take $0^{\circ}< \theta< 90^{\circ}$)
Question : If $\sin(A+B)=\sin A\cos B+\cos A \sin B$, then the value of $\sin75°$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile