13 Views

Question : If $\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$, where $0^{\circ}<\theta<90^{\circ}$ then the value of $\theta$ is:

Option 1: $45^{\circ}$

Option 2: $50^{\circ}$

Option 3: $60^{\circ}$

Option 4: $30^{\circ}$


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 23rd Jan, 2024

Correct Answer: $60^{\circ}$


Solution : Given: The value of $\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$, where $0^{\circ}<\theta<90^{\circ}$.
Use the trigonometric identity, $\sin^2 \theta+\cos^2 \theta=1$.
$\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$
⇒ $\cos ^2 \theta=3(\cot ^2 \theta–\cos ^2 \theta)$
⇒ $\cos ^2 \theta=3(\frac{\cos ^2 \theta}{\sin^2 \theta}–\cos ^2 \theta)$
Dividing both sides by $\cos^2 \theta$,
⇒ $1=3(\frac{1}{\sin ^2 \theta}–1)$
⇒ $1=3(\frac{1–\sin ^2 \theta}{\sin^2 \theta})$
⇒ $\sin^2 \theta=3–3\sin ^2 \theta$
⇒ $4\sin^2 \theta=3$
⇒ $\sin^2 \theta=\frac{3}{4}$
⇒ $\sin \theta=\sqrt{\frac{3}{4}}$
⇒ $\sin \theta=\frac{\sqrt3}{2}$
⇒ $\sin \theta=\sin 60^{\circ}$
⇒ $\theta= 60^{\circ}$
Hence, the correct answer is $60^{\circ}$.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Exam Date: 3 Jan, 2026 - 20 Jan, 2026
Application Date: 10 Jan, 2026 - 9 Feb, 2026
Application Date: 11 Dec, 2025 - 11 Jan, 2026
Application Date: 16 Dec, 2025 - 16 Jan, 2026
Tier II Exam Date: 18 Jan, 2026 - 19 Jan, 2026

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books