Question : If $\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$, where $0^{\circ}<\theta<90^{\circ}$ then the value of $\theta$ is:
Option 1: $45^{\circ}$
Option 2: $50^{\circ}$
Option 3: $60^{\circ}$
Option 4: $30^{\circ}$
Correct Answer: $60^{\circ}$
Solution : Given: The value of $\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$, where $0^{\circ}<\theta<90^{\circ}$. Use the trigonometric identity, $\sin^2 \theta+\cos^2 \theta=1$. $\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$ ⇒ $\cos ^2 \theta=3(\cot ^2 \theta–\cos ^2 \theta)$ ⇒ $\cos ^2 \theta=3(\frac{\cos ^2 \theta}{\sin^2 \theta}–\cos ^2 \theta)$ Dividing both sides by $\cos^2 \theta$, ⇒ $1=3(\frac{1}{\sin ^2 \theta}–1)$ ⇒ $1=3(\frac{1–\sin ^2 \theta}{\sin^2 \theta})$ ⇒ $\sin^2 \theta=3–3\sin ^2 \theta$ ⇒ $4\sin^2 \theta=3$ ⇒ $\sin^2 \theta=\frac{3}{4}$ ⇒ $\sin \theta=\sqrt{\frac{3}{4}}$ ⇒ $\sin \theta=\frac{\sqrt3}{2}$ ⇒ $\sin \theta=\sin 60^{\circ}$ ⇒ $\theta= 60^{\circ}$ Hence, the correct answer is $60^{\circ}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $3\left(\cot ^2 \theta-\cos ^2 \theta\right)=1-\sin ^2 \theta, 0^{\circ}<\theta<90^{\circ}$, then $\theta$ is equal to:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile