Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Option 1: 3
Option 2: 4
Option 3: 1
Option 4: 2
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$. Use the algebraic identity, $(a+b)^2=a^2+b^2+2ab$. $⇒x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{4+3+4 \sqrt{3}}}}$ $⇒x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{(2+\sqrt{3}}})^2}$ $⇒x=\sqrt{–\sqrt{3}+\sqrt{3+8 (2+\sqrt{3}})}$ $⇒x=\sqrt{–\sqrt{3}+\sqrt{3+16+8\sqrt{3}}}$ $⇒x=\sqrt{–\sqrt{3}+\sqrt{(4+\sqrt{3}})^2}$ $⇒x=\sqrt{–\sqrt{3}+4+\sqrt{3}}$ $\therefore x=\sqrt4=2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^2+\frac{1}{x^2}=7$, then the value of $x^3+\frac{1}{x^3}$ where x > 0 is equal to:
Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile