Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Option 1: –1
Option 2: abc
Option 3: 0
Option 4: 1
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ $⇒a-b=\frac{1}{c}-\frac{1}{b}=\frac{b-c}{bc}...(i)$ $⇒b-c=\frac{1}{a}-\frac{1}{c}=\frac{c-a}{ac}...(ii)$ $⇒a-c=\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ba}...(iii)$ Multiplying the above equations, we have, $⇒(a-b)(b-c)(a-c)=(\frac{b-c}{bc})(\frac{c-a}{ac})(\frac{b-a}{ba})$ $⇒(a-b)(b-c)(a-c)=(\frac{(b-c)(c-a)(b-a)}{a^2b^2c^2})$ $⇒ a^2b^2c^2=(\frac{(b-c)(c-a)(b-a)}{(a-b)(b-c)(a-c)})$ $a \neq b\neq c\neq 0$ $⇒ a^2b^2c^2= 1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : If $a+\frac{1}{a}=1$, then the value of $\frac{a^2-a+1}{a^2+a+1}$ is $(a\neq 0)$:
Question : If $a+b+c = 0$, then the value of $\small \frac{1}{(a+b)(b+c)}+\frac{1}{(b+c)(c+a)}+\frac{1}{(c+a)(a+b)}$ is:
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $a+\frac{1}{b}=1$, $b+\frac{1}{c}=1$ , then the value of $(abc)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile