Question : If $\frac{22 \sqrt{2}}{4 \sqrt{2}-\sqrt{3+\sqrt{5}}}=a+\sqrt{5} b$, with $a, b>0$, then what is the value of $(a b):(a+b)$?
Option 1: 7 : 8
Option 2: 7 : 4
Option 3: 4 : 7
Option 4: 8 : 7
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 7 : 8
Solution : Given: $\frac{22 \sqrt{2}}{4 \sqrt{2}-\sqrt{3+\sqrt{5}}}=a+\sqrt{5} b$ Multiplying and dividing the number $\sqrt{3+\sqrt5}$ by $\sqrt2$ ⇒ $\frac{22 \sqrt{2}}{4 \sqrt{2}-(\frac{\sqrt2(\sqrt{3+\sqrt{5})}}{2})}=a+\sqrt{5} b$ ⇒ $\frac{22 \sqrt{2}}{4 \sqrt{2}-(\frac{\sqrt{6+2\sqrt{5}}}{2})}=a+\sqrt{5} b$ $\because (\sqrt{5}+1)^2=6+2\sqrt5$ ⇒ $\frac{22 \sqrt{2}}{4 \sqrt{2}-(\frac{\sqrt{(\sqrt{5}+1)^2}}{2})}=a+\sqrt{5} b$ ⇒ $\frac{22 \sqrt{2}}{4 \sqrt{2}-(\frac{\sqrt{5}+1)}{\sqrt2})}=a+\sqrt{5} b$ ⇒ $\frac{22 \sqrt{2}}{(\frac{4 \sqrt{2}\times\sqrt 2-\sqrt{5}-1)}{\sqrt2})}=a+\sqrt{5} b$ ⇒ $\frac{22 \sqrt{2}\times\sqrt2}{8-\sqrt{5}-1}=a+\sqrt{5} b$ ⇒ $\frac{44}{7-\sqrt{5}}=a+\sqrt{5} b$ On rationalising, we get: ⇒ $\frac{44}{7-\sqrt{5}}\times\frac{7+\sqrt{5}}{7+\sqrt{5}}=a+\sqrt{5} b$ ⇒ $\frac{44(7+\sqrt{5})}{44}=a+\sqrt{5} b$ ⇒ $7+\sqrt{5}=a+\sqrt{5} b$ So, $a=7, b=1$ Now, $(a b):(a+b)$ = $(7\times1):(7+1)$ = $7:8$ Hence, the correct answer is 7 : 8.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{\sqrt{38-5 \sqrt{3}}}{\sqrt{26+7 \sqrt{3}}}=\frac{a+b \sqrt{3}}{23}, b>0$, then the value of $(b-a)$ is:
Question : If $\frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}}=\frac{b+a \sqrt{3}}{11}, b>0$, then what is the value of $\sqrt{(\mathrm{b}-\mathrm{a})}$?
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile