Question : If x6 – 512y6 = (x2 + Ay2) (x4 – Bx2 y2 + Cy4), then what is the value of (A + B – C)?
Option 1: –80
Option 2: –72
Option 3: 72
Option 4: 48
Correct Answer: –80
Solution : Given: $ x^6 - 512y^6 = (x^2 + Ay^2)(x^4 - Bx^2y^2 + Cy^4)$ $\Rightarrow \left \{ x^2 - (\sqrt{8}y)^2 \right \}\left \{ x^4 + 8x^2y^2 + 64y^4 \right \} = (x^2 + Ay^2)(x^4 - Bx^2y^2 + Cy^4)$ On comparing, we get, A = –8, B = –8 and C = 64 $\therefore$ (A + B – C) = ( –8 – 8 – 64) = –80 Hence, the correct answer is –80.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Directions: If x % y = y2 – x2, x $ y = x + y2, x # y = 2xy, then find the value of ((13 % 5) $ 6) # 15 = ?
Question : If x + y + z = 8, and x2 + y2 + z2 = 20, then the value of x3 + y3 + z3 – 3xyz is _______.
Question : If a + b + c = 6 and a2 + b2 + c2 = 38, then what is the value of a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3abc?
Question : If a3 + b3 = 217 and a + b = 7, then the value of ab is:
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile