Question : If X, Y, Z, and W are in proportion. X = 3, Y = 13, and W = 39, determine Z.
Option 1: 5
Option 2: 20
Option 3: 15
Option 4: 9
Correct Answer: 9
Solution : Given: X = 3, Y = 13, and W = 39 We know that, if X, Y, Z, and W are in proportion; then $\frac{X}{Y}=\frac{Z}{W}$ Putting the values, we get: ⇒ $\frac{3}{13}=\frac{Z}{39}$ ⇒ $Z=9$ Hence, the correct answer is 9.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Question : What is $\frac{\left (x^{2}-y^{2} \right)^{3}+\left (y^{2}-z^{2} \right )^{3}+\left (z^{2}-x^{2} \right )^{3}}{\left (x-y \right)^{3}+\left (y-z \right )^{3}+\left (z-x \right)^{3}}?$
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$, where $x \neq y \neq z$, is:
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Question : If $x+y+z=19, x y z=216$ and $x y+y z+z x=114$, then the value of $\sqrt{x^3+y^3+z^3+x y z}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile