Iit jam physics exam pattern and preparation
Hello Vibin, IIT-JAM(Joint admission test) is conducted by IIT 's for getting admitted into the IIT's for M.sc courses. For the exam pattern, please visit https://university.careers360.com/articles/jam-exam-pattern .
So, the preparation plan is to-
- Have a timetable
- Read preferred books
- Have a look at important formulae.
- Solve past years questions
- complete mocktests
- Revise before exam.
Keep these tips in mind which enhance your chances of cracking the IIT-JAM exam.
Hope this helps.
Thank you.
The JAM Examination is will be carried out asONLINEComputer Based Test (CBT) where the candidates will be shown the questions in a random sequence on a computer screen. The duration of the examination will be 3 hours. The medium for all the test papers will be English only. There will be a total of 60 questions carrying 100 marks. The entire paper will be divided into three sections, A, B and C. All sections are compulsory.
For more details regarding preparation tips, please check the link below:
https://www.google.com/amp/s/university.careers360.com/articles/how-prepare-jam-physics/amp
The syllabus for IIT-JAM for physics is as follows:
-
Modern physics:
- Solid State Physics, Devices and Electronics:
Crystal structure, Bravais lattices and basis. Miller indices. X-ray diffraction and Bragg's law; Intrinsic and extrinsic semiconductors, variation of resistivity with temperature. Fermi level. p-n junction diode, I-V characteristics, Zener diode and its applications, BJT: characteristics in CB, CE, CC modes. Single stage amplifier, two stage R-C coupled amplifiers. Simple Oscillators: Barkhausen condition, sinusoidal oscillators. OPAMP and applications: Inverting and non-inverting amplifier. Boolean algebra: Binary number systems; conversion from one system to another system; binary addition and subtraction. Logic Gates AND, OR, NOT, NAND, NOR exclusive OR; Truth tables; combination of gates; de Morgans theorem.
equations with constant coefficients. Matrices and determinants, Algebra of complex numbers.
- Mechanics and General Properties of Matter:
Newtons laws of motion and applications, Velocity and acceleration in Cartesian, polar and cylindrical coordinate systems, uniformly rotating frame, centrifugal and Coriolis forces, Motion under a central force, Keplers laws, Gravitational Law and field, Conservative and non-conservative forces. System of particles, Center of mass, equation of motion of the CM, conservation of linear and angular momentum, conservation of energy, variable mass systems. Elastic and inelastic collisions. Rigid body motion, fixed axis rotations, rotation and translation, moments of Inertia and products of Inertia, parallel and perpendicular axes theorem. Principal moments and axes. Kinematics of moving fluids, equation of continuity, Eulers equation, Bernoullis theorem.
- Oscillations, Waves and Optics:
Differential equation for simple harmonic oscillator and its general solution. Superposition of two or more simple harmonic oscillators. Lissajous figures. Damped and forced oscillators, resonance. Wave equation, traveling and standing waves in one-dimension. Energy density and energy transmission in waves. Group velocity and phase velocity. Sound waves in media. Doppler Effect. Fermats Principle. General theory of image formation. Thick lens, thin lens and lens combinations. Interference of light, optical path retardation. Fraunhofer diffraction. Rayleigh criterion and resolving power. Diffraction gratings. Polarization: linear, circular and elliptic polarization. Double refraction and optical rotation.
- Electricity and Magnetism:
Coulombs law, Gausss law. Electric field and potential. Electrostatic boundary conditions, Solution of Laplaces equation for simple cases. Conductors, capacitors, dielectrics, dielectric polarization, volume and surface charges, electrostatic energy. Biot-Savart law, Amperes law, Faradays law of electromagnetic induction, Self and mutual inductance. Alternating currents. Simple DC and AC circuits with R, L and C components. Displacement current, Maxwells equations and plane electromagnetic waves, Poyntings theorem, reflection and refraction at a dielectric interface, transmission and reflection coefficients (normal incidence only). Lorentz Force and motion of charged particles in electric and magnetic fields.
- Kinetic theory, Thermodynamics:
Elements of Kinetic theory of gases. Velocity distribution and Equipartition of energy. Specific heat of Mono-, di- and tri-atomic gases. Ideal gas, van-der-Waals gas and equation of state. Mean free path. Laws of thermodynamics. Zeroth law and concept of thermal equilibrium. First law and its consequences. Isothermal and adiabatic processes. Reversible, irreversible and quasi-static processes. Second law and entropy. Carnot cycle. Maxwells thermodynamic relations and simple applications. Thermodynamic potentials and their applications. Phase transitions and Clausius-Clapeyron equation. Ideas of ensembles, Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distributions.
Hope this helps!
Related Questions
Know More about
Joint Admission Test for M.Sc Programmes
Eligibility | Application | Admit Card | Result | Counselling | Exam Pattern | Question Paper
Get Updates BrochureYour Joint Admission Test for M.Sc Programmes brochure has been successfully mailed to your registered email id “”.