Question : In a $\triangle$ ABC, BC is extended to D and $\angle$ ACD = $120^{\circ}$. $\angle$ B = $\frac{1}{2}\angle$ A. Then $\angle$ A is:
Option 1: $60^{\circ}$
Option 2: $75^{\circ}$
Option 3: $80^{\circ}$
Option 4: $90^{\circ}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $80^{\circ}$
Solution : $\angle$ ACD = $120^{\circ}$ ⇒ $\angle$ B = $\frac{1}{2}\angle$ A ⇒ $\angle$ACD = $\angle$A + $\angle$B ⇒ $120^{\circ}$ = $\angle$A + $\frac{1}{2}\angle$ A = $\frac{3}{2}\angle$ A ⇒ $\angle$A = $\frac{120×2}{3}$ = $80^{\circ}$ Hence, the correct answer is $80^{\circ}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The side $BC$ of a triangle $ABC$ is extended to $D$. If $\angle ACD = 120^{\circ}$ and $\angle ABC = \frac{1}{2} \angle CAB$, then the value of $\angle ABC$ is:
Question : The side BC of a triangle ABC is produced to D. If $\angle ACD = 112^\circ$ and $\angle B =\frac{3}{4} \angle A$ then the measure of $\angle B$ is:
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Question : In $\triangle$ABC, $\angle$A = $90^{\circ}$, BP and CQ are two medians. Then the value of $\frac{BP^2 + CQ^2}{BC^2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile