Question : In a $\triangle ABC, \angle B=\frac{\pi}{3}, \angle C=\frac{\pi}{4}$ and D divides BC internally in the ratio 1 : 3, then $\frac{\sin \angle BAD}{\sin \angle CAD}$ is equal to:
Option 1: $\frac{1}{\sqrt{2}}$
Option 2:
$\frac{1}{\sqrt{3}}$
Option 3:
$\frac{1}{\sqrt{6}}$
Option 4: $\sqrt{6}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer:
Solution : Given: $\triangle ABC, \angle B=\frac{\pi}{3}=\frac{180°}{3}=60°,$ and $\angle C=\frac{\pi}{4}=\frac{180°}{4}=45°$ So, $\angle A= 180°-(60°+45°)=75°$ In triangles $ABD$ and $ACD$, we have: $\frac{AB}{\sin B}=\frac{BD}{\sin \angle BAD}$ and $\frac{AD}{\sin C}=\frac{CD}{\sin \angle CAD}$ ⇒ $\frac{\sin C}{\sin B}=\frac{\sin \angle CAD}{\sin \angle BAD}×\frac{BD}{CD}$ ⇒ $\frac{\sin 60°}{\sin 45°}=\frac{\sin \angle CAD}{\sin \angle BAD}×\frac{1}{3}$ ⇒ $\frac{\sin \angle BAD}{\sin \angle CAD}=\frac{1}{3}×\frac{\frac{\sqrt{3}}{2}}{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{6}}$ Hence, the correct answer is $\frac{1}{\sqrt{6}}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : ABC is an isosceles right-angle triangle. $\angle ABC = 90 ^{\circ}$ and AB = 12 cm. What is the ratio of the radius of the circle inscribed in it to the radius of the circle circumscribing $\triangle ABC$?
Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at B and $\tan \mathrm{A}=\frac{3}{4}$, then $\sin A + \sin B + \sin C$ will be equal to:
Question : What will be the value of $\sin 10^{\circ}- \frac{4 }{ 3} \sin ^3 10^{\circ}?$
Question : If $\cos 21^{\circ}=\frac{x}{y}$, then $(\operatorname{cosec21^{\circ}}-\cos 69^{\circ})$ is equal to:
Question : Match the following and select the correct answer from the codes given below:
Crops Producing state
(a)Tea
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile