Question : In a $\triangle P Q R, \angle P=90^{\circ}, \angle R=47^{\circ}$ and $P S \perp Q R$. Find the value of $\angle Q P S$.
Option 1: 43°
Option 2: 47°
Option 3: 45°
Option 4: 40°
Correct Answer: 47°
Solution :
In a $\triangle P Q R, $
$\angle P=90^{\circ}$
$\angle R=47^{\circ}$
$P S \perp Q R$
$\angle PSR = 90^{\circ}$
In $\triangle PSR, $
$\angle R + \angle PSR + \angle RPS = 180^{\circ}$
$47^{\circ} + 90^{\circ} + \angle RPS = 180^{\circ}$
$\angle RPS = 180^{\circ}-137^{\circ}=43^{\circ}$
$\angle P=\angle RPS+\angle QPS$
$90^{\circ} = 43^{\circ}+\angle QPS$
$\angle QPS= 47^{\circ}$
Hence, the correct answer is $47^{\circ}$.
Related Questions
Know More about
Staff Selection Commission Sub Inspector ...
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Get Updates BrochureYour Staff Selection Commission Sub Inspector Exam brochure has been successfully mailed to your registered email id “”.