Question : In a $\triangle P Q R, \angle P=90^{\circ}, \angle R=47^{\circ}$ and $P S \perp Q R$. Find the value of $\angle Q P S$.
Option 1: 43°
Option 2: 47°
Option 3: 45°
Option 4: 40°
Correct Answer: 47°
Solution :
In a $\triangle P Q R, $ $\angle P=90^{\circ}$ $\angle R=47^{\circ}$ $P S \perp Q R$ $\angle PSR = 90^{\circ}$ In $\triangle PSR, $ $\angle R + \angle PSR + \angle RPS = 180^{\circ}$ $47^{\circ} + 90^{\circ} + \angle RPS = 180^{\circ}$ $\angle RPS = 180^{\circ}-137^{\circ}=43^{\circ}$ $\angle P=\angle RPS+\angle QPS$ $90^{\circ} = 43^{\circ}+\angle QPS$ $\angle QPS= 47^{\circ}$ Hence, the correct answer is $47^{\circ}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : PQR is a triangle. The bisectors of the internal angle $\angle Q$ and external angle $\angle R$ intersect at S. If $\angle QSR=40^{\circ}$, then $\angle P$ is:
Question : In $\Delta PQR,$ $\angle P : \angle Q : \angle R = 1: 3 : 5$, what is the value of $\angle R - \angle P$?
Question : Circum-centre of $\triangle PQR$ is O. If $\angle QPR=55^{\circ}$ and $\angle QRP=75^{\circ}$, What is the value (in degree) of $\angle OPR$?
Question : PQRS is a cyclic quadrilateral. If $\angle P$ is 4 times $\angle R$, and $\angle S$ is 3 times $\angle Q$, then the average of $\angle Q$ and $\angle R$ is:
Question : In $\triangle A B C, \mathrm{BD} \perp \mathrm{AC}$ at $\mathrm{D}$. $\mathrm{E}$ is a point on $\mathrm{BC}$ such that $\angle B E A=x^{\circ}$. If $\angle E A C=46^{\circ}$ and $\angle E B D=60^{\circ}$, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile