8 Views

Question : In $\Delta \mathrm{ABC}$, a line parallel to side $\mathrm{BC}$ cuts the sides $\mathrm{AB}$ and $\mathrm{AC}$ at points $\mathrm{D}$ and $\mathrm{E}$ respectively and also point $\mathrm{D}$ divides $\mathrm{AB}$ in the ratio of $\mathrm{1 : 4}$. If the area of $\Delta \mathrm{ABC}$ is $200\;\mathrm{cm^2}$, then what is the area (in $\mathrm{cm^2}$) of quadrilateral $\mathrm{DECB}$?

Option 1: 192

Option 2: 50

Option 3: 120

Option 4: 96


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 12th Jan, 2024

Correct Answer: 192


Solution :
Given: $\mathrm{AD:DB=1:4}$ and the area of $\Delta \mathrm{ABC}$ is $200\;\mathrm{cm^2}$.
In $\Delta \mathrm{ABC}$,
$\mathrm{DE}\parallel\mathrm{BC}$
So, $\Delta \mathrm{ADE}\sim\Delta \mathrm{ABC}$,
The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
⇒ $\frac{\text{Area of $\Delta \mathrm{ADE}$}}{{\text{Area of $\Delta \mathrm{ABC}$}}}=(\frac{\mathrm{AD}}{\mathrm{AB}})^2$
⇒ $\frac{\text{Area of $\Delta \mathrm{ADE}$}}{{200}}=(\frac{\mathrm{1}}{\mathrm{5}})^2$
⇒ $\frac{\text{Area of $\Delta \mathrm{ADE}$}}{{200}}=(\frac{\mathrm{1}}{\mathrm{25}})$
⇒ $\text{Area of $\Delta \mathrm{ADE}$}=8\;\mathrm{cm^2}$
The area of quadrilateral $\mathrm{DECB}=\text{Area of $\Delta \mathrm{ABC}$}-\text{Area of $\Delta \mathrm{ADE}$}$
$=200\;\mathrm{cm^2}-8\;\mathrm{cm^2}=192\;\mathrm{cm^2}$
Hence, the correct answer is $192$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books