Question : In a quadrilateral ABCD, E is a point in the interior of the quadrilateral such that DE and CE are the bisectors of $\angle D$ and $\angle C$, respectively. If $\angle B=82^{\circ}$ and $\angle D E C=80^{\circ}$, then $\angle A=$ ?
Option 1: 75º
Option 2: 81º
Option 3: 84º
Option 4: 78º
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 78º
Solution : Concept used: The sum of all the internal angles of a quadrilateral is 360$^\circ$ The sum of all the internal angles of a triangle is 180$^\circ$ Calculations: In quadrilateral ABCD, $\angle$A + $\angle$B + $\angle$C + $\angle$D = 360$^\circ$ ⇒ $\angle$A + 82° + $\angle$C + $\angle$D = 360$^\circ$ ⇒ $\angle$A + $\angle$C + $\angle$D = 278$^\circ$ ----(1) In $\triangle$DEC, $\angle$EDC + $\angle$DEC + $\angle$ECD = 180$^\circ$ ⇒ $\frac{\angle \text{D}}{2}$ + 80$^\circ$ + $\frac{\angle \text{C}}{2}$ = 180$^\circ$ ⇒ $\frac{\angle \text{D}}{2}$ + $\frac{\angle \text{C}}{2}$ = 100$^\circ$ ⇒ $\angle$D + $\angle$C = 200$^\circ$ ----(2) Put the value of $\angle$D + $\angle$C from eq.(2) to eq. (1) ⇒ $\angle$A + 200$^\circ$ = 278$^\circ$ ⇒ $\angle$A = 78$^\circ$ $\therefore$ The value of $\angle$A is 78$^\circ$ Hence, the correct answer is 78$^\circ$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : In $\triangle A B C, \angle B=78^{\circ}, A D$ is a bisector of $\angle A$ meeting BC at D, and $A E \perp B C$ at $E$. If $\angle D A E=24^{\circ}$, then the measure of $\angle A C B$ is:
Question : In $\triangle A B C, \angle A=66^{\circ}$ and $\angle B=50^{\circ}$. If the bisectors of $\angle B$ and $\angle C$ meet at P, then, $\angle B P C-\angle P C A=$?
Question : In $\triangle {ABC}$, D is a point on BC such that $\angle {ADB}=2 \angle {DAC}, \angle {BAC}=70^{\circ}$ and $\angle {B}=56^{\circ}$. What is the measure of $\angle A D C$?
Question : In a triangle ${ABC}, {D}$ is a point on ${BC}$ such that $\frac{A B}{A C}=\frac{B D}{D C}$. If $\angle B=68^{\circ}$ and $\angle C=52^{\circ}$, then measure of $\angle B A D$ is equal to:
Question : If $ABCD$ be a cyclic quadrilateral in which $\angle A=x^\circ,\angle B=7x^\circ,\angle C=5y^\circ,\angle D=y^\circ$, then $x:y$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile