Question : In a right-angled triangle $\mathrm{XYZ}$, if $\mathrm{X}=60^{\circ}$ and $\mathrm{Y}=30^{\circ}$, then find the value of $\sin (\mathrm{X}-\mathrm{Y})$.
Option 1: $\frac{3}{5}$
Option 2: $\frac{1}{2}$
Option 3: $\frac{3}{4}$
Option 4: $\frac{2}{3}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{2}$
Solution : Given: $\mathrm{X}=60^{\circ}$ and $\mathrm{Y}=30^{\circ}$ Then, $\sin (\mathrm{X}-\mathrm{Y})$ = $\sin(60-30)^{\circ}$ = $\sin 30^{\circ}$ = $\frac{1}2$ Hence, the correct answer is $\frac{1}2$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In right angled triangle ABC, if $\angle \mathrm{A}=30^{\circ}$, find the value of $3 \sin \mathrm{A}-4 \sin ^3 \mathrm{~A}$.
Question : If $\frac{x-x\tan^{2}30^{\circ}}{1+\tan^{2}30^{\circ}}=\sin^{2}30^{\circ}+4\cot^{2}45^{\circ}-\sec^{2}60^{\circ}$, then value of $x$ is:
Question : If $\sin(60^{\circ}-x)=\cos(y+60^{\circ})$, then the value of $\sin(x-y)$ is:
Question : $\triangle$XYZ is right angled at Y. If $\cos X=\frac{3}{5}$, then what is the value of $\operatorname{cosec}Z$?
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile