Question : In a right-angled triangle $\Delta PQR, PR$ is the hypotenuse of length 20 cm, $\angle PRQ = 30^{\circ}$, the area of the triangle is:
Option 1: $50\sqrt{3}\text{ cm}^{2}$
Option 2: $100\sqrt{3}\text{ cm}^{2}$
Option 3: $25\sqrt{3}\text{ cm}^{2}$
Option 4: $\frac{100}{\sqrt{3}}\text{ cm}^{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $50\sqrt{3}\text{ cm}^{2}$
Solution : $\sin 30^\circ=\frac{PQ}{PR}$ ⇒ $\frac{1}{2}=\frac{PQ}{20}$ ⇒ $PQ=\frac{20}{2}=10$ cm $\cos 30^\circ=\frac{QR}{PR}$ ⇒ $\frac{\sqrt3}{2}=\frac{QR}{20}$ ⇒ $QR=\frac{20\sqrt3}{2}=10\sqrt3$ cm Area of $\triangle PQR=\frac{1}{2}\times PQ \times QR$ $=\frac{1}{2}\times 10 \times10\sqrt3$ $=50\sqrt3\text{ cm}^2$ Hence, the correct answer is $50\sqrt3\text{ cm}^2$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\triangle PQR$ is right-angled at $Q$. The length of $PQ$ is 5 cm and $\angle P R Q=30^{\circ}$. Determine the length of the side $QR$.
Question : The centroid of an equilateral triangle PQR is L. If PQ = 6 cm, the length of PL is:
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Question : If the length of each of two equal sides of an isosceles triangle is 10 cm and the adjacent angle is $45^{\circ}$, then the area of the triangle is:
Question : The area of the parallelogram whose length is 30 cm, width is 20 cm and one diagonal is 40 cm is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile