Question : In a right triangle for an acute angle $x$, if $\sin x=\frac{3}{7}$, then find the value of $\cos x$.
Option 1: $\frac{2}{7}$
Option 2: $\frac{3}{4}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\frac{2\sqrt{10}}{7}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2\sqrt{10}}{7}$
Solution : Given that, it is a right-angle triangle with an acute angle $x$. $\therefore$ Angle $x$ lies between $0$ to $\frac{\pi}{2}$ Given: $\sin x=\frac{3}{7}$ Squaring both sides, $\sin^2 x=\frac{9}{49}$ Since $\sin^2 x+ \cos^2 x=1$, So, $\cos^2 x=1-\frac{9}{49}$ ⇒ $\cos x =\frac{2\sqrt {10}}{7}$ Hence, the correct answer is $\frac{2\sqrt{10}}{7}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Question : If $\tan \frac{A}{2}=x$, then find $x$.
Question : $\triangle ABC$ is a right triangle. If $\angle B=90^{\circ}$ and $\tan A=\frac{1}{\sqrt{2}}$, then the value of $\sin A \cos C + \cos A \sin C$ is:
Question : If $\cos^2 \theta=\frac{3}{4}$, where $\theta$ is an acute angle, then the value of $\sin \left(\theta+30^{\circ}\right)$ is:
Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile