Question : In a triangle ABC; 8$\angle$A = 6$\angle$B = 3$\angle$C. What are the degree measures of $\angle$ A, $\angle$ B, and $\angle$C?
Option 1: $48^{\circ}, 96^{\circ}, \text{and } 36^{\circ}$
Option 2: $36^{\circ}, 96^{\circ}, \text{and } 48^{\circ}$
Option 3: $36^{\circ}, 48^{\circ}, \text{and } 96^{\circ}$
Option 4: $96^{\circ}, 48^{\circ}, \text{and } 36^{\circ}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: $36^{\circ}, 48^{\circ}, \text{and } 96^{\circ}$
Solution :
Given: 8$\angle$A = 6$\angle$B
$⇒\angle$A = $\frac{6}{8}\angle$B = $\frac{3}{4}\angle$B ----------------(i)
Also, 6$\angle$B = 3$\angle$C
$⇒\angle$C = $\frac{6}{3}\angle$B = 2$\angle$B ---------------(ii)
Now, $\angle$A + $\angle$B + $\angle$C = $180^{\circ}$
$⇒\frac{3}{4}\angle$B + $\angle$B + 2$\angle$B = $180^{\circ}$
$⇒\frac{15}{4}\angle$B = $180^{\circ}$
$⇒\angle$B = $48^{\circ}$
So, $\angle$A = $\frac{3}{4}×48^{\circ}=36^{\circ}$
$⇒\angle$C = 2 × $48^{\circ}=96^{\circ}$
Hence, the correct answer is $36^{\circ}, 48^{\circ}, \text{and } 96^{\circ}$.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.