Question : In a triangle ABC; 8$\angle$A = 6$\angle$B = 3$\angle$C. What are the degree measures of $\angle$ A, $\angle$ B, and $\angle$C?
Option 1: $48^{\circ}, 96^{\circ}, \text{and } 36^{\circ}$
Option 2: $36^{\circ}, 96^{\circ}, \text{and } 48^{\circ}$
Option 3: $36^{\circ}, 48^{\circ}, \text{and } 96^{\circ}$
Option 4: $96^{\circ}, 48^{\circ}, \text{and } 36^{\circ}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $36^{\circ}, 48^{\circ}, \text{and } 96^{\circ}$
Solution : Given: 8$\angle$A = 6$\angle$B $⇒\angle$A = $\frac{6}{8}\angle$B = $\frac{3}{4}\angle$B ----------------(i) Also, 6$\angle$B = 3$\angle$C $⇒\angle$C = $\frac{6}{3}\angle$B = 2$\angle$B ---------------(ii) Now, $\angle$A + $\angle$B + $\angle$C = $180^{\circ}$ $⇒\frac{3}{4}\angle$B + $\angle$B + 2$\angle$B = $180^{\circ}$ $⇒\frac{15}{4}\angle$B = $180^{\circ}$ $⇒\angle$B = $48^{\circ}$ So, $\angle$A = $\frac{3}{4}×48^{\circ}=36^{\circ}$ $⇒\angle$C = 2 × $48^{\circ}=96^{\circ}$ Hence, the correct answer is $36^{\circ}, 48^{\circ}, \text{and } 96^{\circ}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Question : The side $BC$ of a triangle $ABC$ is extended to $D$. If $\angle ACD = 120^{\circ}$ and $\angle ABC = \frac{1}{2} \angle CAB$, then the value of $\angle ABC$ is:
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Question : In $\triangle ABC, \angle B = 60^\circ$ and $\angle C = 40^\circ$, AD and AE are respectively the bisectors of $\angle A$ and perpendicular on BC. Find the measure of $\angle EAD$.
Question : In a Rhombus STUV, S and U are joined $\angle \text{SUV}=44^{\circ}, \angle \text{STU}=92^{\circ}$, what is the degree measure of $4 \angle SVU-3 \angle TSU$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile