Question : In a triangle ABC, if $\angle B=90^{\circ}, \angle C=45^{\circ}$ and AC = 4 cm, then the value of BC is:
Option 1: $\sqrt{2} \mathrm{~cm}$
Option 2: $4 \mathrm{~cm}$
Option 3: $2 \sqrt{2} \mathrm{~cm}$
Option 4: $4 \sqrt{2} \mathrm{~cm}$
Correct Answer: $2 \sqrt{2} \mathrm{~cm}$
Solution : AC = 4 cm $\angle B=90^{\circ}$ $\angle C=45^{\circ}$ $\therefore \angle A = 180^{\circ}-(90^{\circ}+45^{\circ}) = 45^{\circ}$ Since $\angle A= \angle C$, $AB = BC$ -----------(i) By Pythagoras theorem, $AB^2 + BC^2 = AC^2$ ⇒ $BC^2 + BC^2 = 4^2$ ⇒ $2BC^2 = 16$ ⇒ $BC^2 = 8$ ⇒ $BC = \sqrt8 = 2\sqrt2$ Hence, the correct answer is $2\sqrt2$ cm.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle$ ABC, $\angle$ C = 90$^{\circ}$. M and N are the midpoints of sides AB and AC, respectively. CM and BN intersect each other at D and $\angle$ BDC = 90$^{\circ}$. If BC = 8 cm, then the length of BN is:
Question : In $\triangle \mathrm{ABC}, \mathrm{BD} \perp \mathrm{AC}$ at D. E is a point on BC such that $\angle \mathrm{BEA}=x^{\circ}$. If $\angle \mathrm{EAC}=62^{\circ}$ and $\angle \mathrm{EBD}=60^{\circ}$, then the value of $x$ is:
Question : In a $\triangle \mathrm{ABC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at $\mathrm{O}$. If $\angle \mathrm{BOC}=142^{\circ}$, then the measure of $\angle \mathrm{A}$ is:
Question : In a circle with centre O, AD is a diameter and AC is a chord. Point B is on AC such that OB = 7 cm and $\angle OBA=60^{\circ}$. If $\angle \mathrm{DOC}=60^{\circ}$, then what is the length of BC?
Question : In $\triangle A B C, \mathrm{BD} \perp \mathrm{AC}$ at $\mathrm{D}$. $\mathrm{E}$ is a point on $\mathrm{BC}$ such that $\angle B E A=x^{\circ}$. If $\angle E A C=46^{\circ}$ and $\angle E B D=60^{\circ}$, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile