7 Views

Question : In a triangle ${ABC}, {D}$ is a point on ${BC}$ such that $\frac{A B}{A C}=\frac{B D}{D C}$. If $\angle B=68^{\circ}$ and $\angle C=52^{\circ}$, then measure of $\angle B A D$ is equal to:

Option 1: $50^{\circ}$

Option 2: $40^{\circ}$

Option 3: $60^{\circ}$

Option 4: $30^{\circ}$


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 17th Jan, 2024

Correct Answer: $30^{\circ}$


Solution :
Given: In a triangle ${ABC}, {D}$ is a point on ${BC}$ such that $\frac{A B}{A C}=\frac{B D}{D C}$.
The angle bisector theorem states that an angle bisector of a triangle divides the opposite side into two segments that are proportional to the other two sides of the triangle.
The $\angle B=68^{\circ}$ and $\angle C=52^{\circ}$.
The sum of all the angles in a triangle = $180^{\circ}$.
⇒ $\angle A + \angle B + \angle C = 180^{\circ}$
⇒ $\angle A +68^{\circ}+52^{\circ} = 180^{\circ}$
⇒ $\angle A +120^{\circ} = 180^{\circ}$
⇒ $\angle A =180^{\circ} – 120^{\circ}$
⇒ $\angle A =60^{\circ}$
The measure of $\angle B A D=\frac{60^{\circ}}{2}=30^{\circ}$.
Hence, the correct answer is $30^{\circ}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books