Question : In $\triangle$ABC, $\angle$A = $90^{\circ}$, BP and CQ are two medians. Then the value of $\frac{BP^2 + CQ^2}{BC^2}$ is:
Option 1: $\frac{4}{5}$
Option 2: $\frac{5}{4}$
Option 3: $\frac{3}{4}$
Option 4: $\frac{3}{5}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{5}{4}$
Solution : Since BP and CQ are two medians. So, Q and P are midpoints of AB and AC respectively. AQ = BQ = $\frac{1}{2}$AB AP = CP = $\frac{1}{2}$AC In $\triangle$AQC, $\angle$A = $90^{\circ}$ By Pythagoras theorem, ⇒ CQ 2 = AC 2 + QA 2 ⇒ 4CQ 2 = 4AC 2 + 4QA 2 ⇒ 4CQ 2 = 4AC 2 + (2QA) 2 ⇒ 4CQ 2 = 4AC 2 + AB 2 ------------(i) In $\triangle$ BPA, ⇒ BP 2 = BA 2 + AP 2 ⇒ 4BP 2 = 4BA 2 + 4AP 2 ⇒ 4BP 2 = 4BA 2 + (2AP) 2 ⇒ 4BP 2 = 4BA 2 + AC 2 ------------(ii) Adding (i) and (ii), ⇒ 4CQ 2 + 4BP 2 = 4AC 2 + AB 2 + 4BA 2 + AC 2 ⇒ 4(CQ 2 + BP 2 ) = 5AC 2 + 5BA 2 = 5(AC 2 + AB 2 ) = 5BC 2 ⇒ $\frac{BP^2 + CQ^2}{BC^2}$ = $\frac{5}{4}$ Hence, the correct answer is $\frac{5}{4}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The side $BC$ of a triangle $ABC$ is extended to $D$. If $\angle ACD = 120^{\circ}$ and $\angle ABC = \frac{1}{2} \angle CAB$, then the value of $\angle ABC$ is:
Question : In a $\triangle$ ABC, BC is extended to D and $\angle$ ACD = $120^{\circ}$. $\angle$ B = $\frac{1}{2}\angle$ A. Then $\angle$ A is:
Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Question : $\triangle{ABC}$ is a right angled triangle. $\angle \mathrm{C}=90°$, AB = 25 cm and BC = 20 cm. What is the value of $\mathrm{sec}\; A$?
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile