7 Views

Question : In $\triangle$ ABC, $\angle$ C = 90$^{\circ}$. M and N are the midpoints of sides AB and AC, respectively. CM and BN intersect each other at D and $\angle$ BDC = 90$^{\circ}$. If BC = 8 cm, then the length of BN is:

Option 1: $6 \sqrt{3} {~cm}$

Option 2: $6 \sqrt{6} {~cm}$

Option 3: $4 \sqrt{6} {~cm}$

Option 4: $8 \sqrt{3} {~cm}$


Team Careers360 1st Jan, 2024
Answer (1)
Team Careers360 5th Jan, 2024

Correct Answer: $4 \sqrt{6} {~cm}$


Solution :
Given: BN and CM are medians of  $\triangle$ ABC, D is the centroid of the triangle.
D will divide BN in the ratio 2 : 1
$\therefore$ BD : DN = 2 : 1
Let BD = 2$x$ and DN = $x$
⇒ BN = 3$x$
In right-angled $\triangle$ CNB, CD perpendicular to BN
⇒ DC 2 = BD × BN
⇒ DC 2 = $2x \times x$
⇒ DC = $x\sqrt2$
Now, in $\triangle$ CDB
BC 2 = CD 2 + BD 2
⇒ 8 2 = 2$x^2$ + $(2x)^2$
⇒ 64 =6$x^2$
⇒ $x = \frac{8}{\sqrt6}$
⇒ $BN = 3x = 3 \times \frac{8}{\sqrt6} = 4\sqrt 6$
Hence, the correct answer is $4\sqrt 6~cm$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books