4 Views

Question : In $\triangle$ABC, D and E are two points on the sides AB and AC, respectively, so that DE $\parallel$ BC and $\frac{AD}{BD}=\frac{2}{3}$. Then $\frac{\text{Area of trapezium DECB}}{\text{Area of $\triangle$ABC}}$ is equal to:

Option 1: $\frac{5}{9}$

Option 2: $\frac{21}{25}$

Option 3: $1\frac{4}{5}$

Option 4: $5\frac{1}{4}$


Team Careers360 7th Jan, 2024
Answer (1)
Team Careers360 16th Jan, 2024

Correct Answer: $\frac{21}{25}$


Solution :
Given: $\frac{AD}{BD}=\frac{2}{3}$ and DE $\parallel$ BC
So, $\triangle$ABC and $\triangle$ADE are similar.
⇒ $\frac{\text{Area of $\triangle$ABC}}{\text{Area of $\triangle$ADE}}=\frac{(AB)^2}{(AD)^2}$
⇒ $\frac{\text{Area of $\triangle$ABC}}{\text{Area of $\triangle$ADE}}=\frac{(2+3)^2}{(2)^2}=\frac{25}{4}$
Let the area of $\triangle$ABC and $\triangle$ADE be 25k and 4k, respectively.
So, the area of trapezium DECB = (Area of $\triangle$ABC) – (Area of $\triangle$ADE) = 25k – 4k = 21k
Therefore, $\frac{\text{Area of trapezium DECB}}{\text{Area of $\triangle$ABC}}$ = $\frac{21k}{25k}$ = $\frac{21}{25}$
Hence, the correct answer is $\frac{21}{25}$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books