3 Views

Question : In $\triangle$ABC, the straight line parallel to the side BC meets AB and AC at the points P and Q, respectively. If AP = QC, the length of AB is 16 cm and the length of AQ is 4 cm, then the length (in cm) of CQ is:

Option 1: $(2 \sqrt{21}+2)$

Option 2: $(2 \sqrt{18}-2)$

Option 3: $(2 \sqrt{17}-2)$

Option 4: $(2 \sqrt{19}+2)$


Team Careers360 15th Jan, 2024
Answer (1)
Team Careers360 16th Jan, 2024

Correct Answer: $(2 \sqrt{17}-2)$


Solution :
In $ \triangle  $APQ and $ \triangle  $ABC,
$ \angle  $P = $ \angle  $B (corresponding angle)
$ \angle  $Q = $ \angle  $C (corresponding angle)
$ \triangle  $APQ $\sim$ $ \triangle  $ABC, by AA similarity.
Given that AP = QC, AB = 16 cm, and AQ = 4 cm.
Let the length of QC be $y$ cm.
We can use the property of similar triangles to set up the following proportion,
$⇒\frac{AP}{AB} = \frac{AQ}{AC}$
$⇒\frac{AB}{AP}= \frac{AC}{AQ}$
$⇒\frac{AB}{AP}-1= \frac{AC}{AQ}-1$
$⇒\frac{AB}{AP}-1= \frac{AC-AQ}{AQ}$
$⇒\frac{AB}{AP}-1= \frac{QC}{AQ}$
$⇒\frac{12}{QC}-1= \frac{QC}{4}$
$⇒\frac{12}{y}-1= \frac{y}{4}$
$⇒y^2+4y-64=0$
$⇒y=\frac{-4 \pm\sqrt{4^2-4 \times 1\times (-64)}}{2\times 1}$
$⇒y=\frac{-4 \pm\sqrt{272}}{2}$
$⇒y=\frac{-4 \pm 4\sqrt{17}}{2}$
$⇒y=(2 \sqrt{17}-2)$
Hence, the correct answer is $(2 \sqrt{17}-2)$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books